直流電源模塊的3大發展趨勢
為了滿足市場對電源性能不斷提高的要求,直流模塊電源開始向高效率、高功率密度、低壓大電流、低噪音、良好的動態特性以及寬輸入范圍等方向發展,薄型化、模塊化、標準化并以積木的方式進行組合的電路拓撲結構得到了日益廣泛的應用。下面就其重點加以分析。歡迎光臨公司官網http://
(1)高功率密度 高效率
現代通信產品對體積的要求越來越高,這勢必要求模塊電源減小體積、提高功率密度,而提高效率是與之相輔相成的。目前的新型轉換及封裝技術可使電源的功率密度達到188W/in3,比傳統的電源功率密度增大不止一倍,效率可超過 90%。之所以能達到這些指標,應歸功于微電子技術的發展使大量高性能的新型器件涌現出來,從而使損耗降低。較典型的是高性能的金屬氧化物半導體場效應晶體管 (MOSFETs),其在同步整流器中取代了傳統設計中使用的二極管,使壓降由0.4V降到0.2V; 功率MOSFET制造商正在開發導通電阻越來越小的器件,其導通電阻已由180 mΩ降到18 mΩ;高度的硅晶片集成使元件數目減少2/3以上,結構緊密、相對于分立元件的布局減小了雜散電感和連線電阻。高效率可使功耗相對減少,工作溫度降低,所需的輸入功率減少,也提高了功率密度。
(2)低壓大電流
隨著微處理器工作電壓的下降,模塊電源輸出電壓亦從以前的5V降到了現在的3.3V甚至1.8V,業界預測,電源輸出電壓還將降到1.0V以下。與此同時,集成電路所需的電流增加,要求電源提供較大的負載輸出能力。直流電源 對于1V/100A的模塊電源,有效負載相當于0.01Ω,傳統技術難以勝任如此高難度的設計要求。在10mΩ負載的情況下,通往負載路徑上的每mΩ電阻都會使效率下降10%,印制電路板的導線電阻、電感器的串聯電阻、MOSFET的導通電阻及MOSFET的管芯接線等對效率都有影響。
(3)利用軟件設計電源
如今通信系統中,直流電壓的品種不斷增加,功率密度和集成度的提高亦增加了設計難度,傳統的手工設計與驗證已無法適應快速變化的市場需求,于是,電源輔助設計軟件應運而生了。這些軟件可指導元器件選擇,并提供材料清單、電路仿真及熱分析,縮短了電源設計的周期,提高了電源的性能。輔助設計軟件可使用多種參數定制電源,包括輸入及輸出電壓范圍、{zd0}輸出電流等,引導設計人員進行器件選擇,它包含完整的變壓器設計,使用多種拓撲方法來綜合電路,按成本或效率進行優化,并輸出元件清單。